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ABSTRACT 
Transverse relaxation time is important in magnetic resonance imaging (MRI). It is important to construct new 

models to find new parameters that control imaging quality. In this work Schrodinger Equation in energy space for 

two level systems was used to find transverse relaxation time.  By suggesting sine and cosine beside complex 

solutions a useful expression for transverse relaxation time was found. When electric interaction dominate, i.e. for 

dielectric materials the transverse relaxation time depends on the electric dipole moment. However the magnetic 
materials having magnetic spin and magnetic dipole moment, it depends on the internal field as well as spin 

quantum number. 

 

Key Words: transverse relaxation time, energy wave function, electric dipole moment, internal magnetic field, spins 

quantum number. 

 

I. INTRODUCTION 
 

Magnetic resonance imaging (MRI) is one of the most popular techniques which is widely used in medical 

diagnostic .It gives good image quality since the image contrast depends on three parameters. These parameters are 

longitudinal, transverse relaxation time beside the so called spin density [1,2].The understanding of these parameters 

needs understanding the so called nuclear magnetic resonance. In this process the application of external magnetic 
field splits protons energy levels into two sub levels according to their spin orientation [3]. The protons having 

magnetic spin opposite to the external field occupies the higher splatter energy level. The protons with magnetic 

spin moment pointing in the direction of the external magnetic field occupy the lower spited level [4]. The 

differences between the two levels are proportional to the strength of the external magnetic field. The organ image is 

formed by applying microwave of specific frequency, then apply sinusoidal variable magnetic field which change 

the energy different between the two splitter levels. When the energy difference equals the microwave photon 

energy resonance occurs and the photons are absorbed. The absorption rate normal tissue is different from that 

abnormal one [5, 6].In conventional (MRI) theories the image contrast depends on longitudinal, transverse 

relaxation time as well as the density of hydrogen atoms. These also depend on material properties as well as 

external and internal magnetic field. To improve image quality one need new models and trend this can discover 

new mechanism that control image contrast, sensitivity and detection limit. Different attempts were made so as to 

explain MRI on new basis [7, 8, and 9], but one needs more new trends are required. This is the aims of this work is 
to use the Schrodinger Equation in the momentum space to find useful expression for relaxation time. 
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Generalized Energy Wave Function for Tow Level System 

 
 Consider the time dependent Schrödinger equation for tow level system 

     (1) 

Where stands for the wave function in the energy space. 

The equations for k=1 and k=2 are given respectively to be  

    (2) 

 

    (3) 

Where 

          (4) 

Differentiating (2) yields: 

        (5) 

Multiplying (5) by yields  

 

 

 

Substituting (3) in (6) 

 

  

 

 

To eliminate from (7) one can utilize eq. (2) to get  

  

Using this equation in equation (7) yields: 

 

(8) 

( 9) 

Now let 

 

     (10) 

The equation (9) can be reduced to the form: 

 

                (11) 

The parameters a, b and c are constant in time. Thus one can try the solution of the form: 
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sin        (12) 

 

         (13)                                                        

Sub. (12) and (13) in (11) yields: 

 

Equating the coefficients at sin  and cos  on both sides, one gets: 

 

      (14) 

Thus:  

                      (15) 

Hence (15) and (10) yields: 

                    (16) 

 

To find the frequency equation (16) is inserted in equation (14) to get  

      (17) 

Utilizing the expression for a in equation (10) yields: 

       (18) 

 

The probability that state is occupied is given by  

 

     (19) 

The energy level is empty at since sin0=0 

Its occupation is a maximum when:  
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AeC 1

t 

  cossin1

.
  AeAeC









cos2sin)(

sincoscos2sin

22

222

1










AeAe

AeAeAeAeC

tCtbbaa  sincossincos2sin)( 22 

 t

Cba   )( 22

 ba 2

222 

b

a

b







C
a

b
a

C
a

b
a

a

ab











4

24
2

2

2
2

2

2





a

C

a

b







4

2
2

22

24

2

2

4

2

2

2

4
2

1

4

4

bC
bC

bC














1E

teACCC t  222

11

2

1 sin 

t

2

1sin










ff 4

1

42













 
[Saad, 6(3): March 2019]                                                                                                         ISSN 2348 – 8034 
DOI- 10.5281/zenodo.2616917                                                                                    Impact Factor- 5.070 

    (C)Global Journal Of Engineering Science And Researches 

 

254 

Equation (11) can be solved by suggesting the solution 

 

                                                                (21) 

Therefore: 

 (22) 

Inserting (21) and (22) in (11) yields: 

      (23) 

Equating real and imaginary parts yields: 

       (24) 

          (25) 

Hence an equation (10) and (14) reads: 

        (26) 

 

Thus the frequency is given by: 

        (27) 

The probability of occupation of the energy level  can thus be given according to equation (21) to be 

       (28) 

The normalization condition for  is given to be 
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        (29) 

There for to equation (21) 

 e        (30) 

The occupation probability for   

 is thus  

        (31) 
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The probability is maximum  

       (32) 

But the probability is near to zero or very small when: 

         (33) 

The term can be found with the aid of equations (26) and (10) to be 

      (34) 

The Hamiltonian part of the perturbing internal field B  which interact with spin is given  

 (35) 

 

Where  

       (36) 

= magnetic permeability in free space, i= current. 

The corresponding proton is given by:  

       (37) 

Where: 

r=a=atomic radius, momentum operator using Heisenberg picture:   
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                 (39) 
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        (41) 

And the hermilicity of requires 

    (42) 

But according to modified Schrödinger equation [18]    

=                                              (43) 

Where: 

 K=wave number, =electric permissibility in free space, = relative electric permissibility, = Boher 

magnetron  

= relative magnetic permittivity          

   

 (44)     

With  

       (45) 

= v/c 

There for: v=medium speed of light, c= free space speed of light   

Thus 
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Thus according to equations (40) and one gets 

  

      (47) 

=relative magnetic susceptibility  

Sub. (47) in (10) yields: 
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One can simplify the above expression by bearing in mind that: 
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Yield: 

      (57) 

Taking the real part of C yields: 

                                                     (58)     

Thus the transverse relaxation time is given from the expositional term as:  
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 (61)      

Two level system n, m=1.2 

             (62) 

Thus according to equation (10) 
 

  

                                           (63) 

 

Thus according to equations (26) and (27), are gets 

 

                                               (64) 

Hence 

             (65) 

For very small mass and very strong internal magnetic field equation  

(64) and becomes: 

 = i       (66) 

        (67) 

Substituting (66) and (67) in (21) yields: 

C = A e e  

  

Taking the real part 
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C                                   (68) 

                                             (69) 

With the aid of equation (4.4.69) the exponential term gives  

        (70) 

And the cosine term gives 

 At t=0      

  (71)     

When the internal field  is neglected equations (64) and (65) reads  

 

In view of equation (21)  

 

 

Taking the real part of  thus: 

 

 

Thus the relaxation time according to the exponential term is given by: 

 

And according to the cosine term is given by  

 t=0 

  

                                   (72) 

mtBes

Ae

iz

m

B

i

i

2/cos

zes  

1


2

1C

m

tBes

e

iz

m

B

i

i

2
cos 2

es  2 z

iz Bes

m
tT

2
2 

1
2

1 C 0
2

1 C

iz

iz

Bes

m
T

m

TBes













2

2

22

iB

2
)(

2

1

2

122

12

12








 




i

22
1

1212 tti

eAeC

 



1C

2
cos 12

2
1

12

tAeC

t








2
cos 12222

1
12

t
eAC

t 


12

2

2


 tT

1
2

1 C

0
2

1 C
22

12 
t

















2112

2T



 
[Saad, 6(3): March 2019]                                                                                                         ISSN 2348 – 8034 
DOI- 10.5281/zenodo.2616917                                                                                    Impact Factor- 5.070 

    (C)Global Journal Of Engineering Science And Researches 

 

261 

Where is  the proton frequency which is readied for transition from level  

 to level  such that [19,20, 21, 22, 23] 

 

 

II. DISCUSSION 
 
Schrodinger Equation in the energy space two level systems in equation (1) is used to find new expressions for the 

relaxation time. The energy wave function was assumed to be in the form suggested in equation (12). Substituting 

this solution in the Schrodinger equation (11) and equating the coefficients of sin and cos the frequency ω was found 

in equation (18).Using the fact that the square of the wave function C1 is proportional to probability the relaxation 

time is shown to be inversely proportional to angular frequency as equation (20) shows. This agrees with the 

ordinary one. For electric interaction another exponential solution of C1 was suggested in equation (21). Using this 

in equation (11) and equating real and imaginary parts, one founds ω in (27). Bearing in mind that |𝐶1|
2 is the 

probability in equation (31) and (32) the relaxation time T2, i.e. the transverse one, is dependent on electric moment 

as equation (59a) indicates. When the interaction potential depends on the magnetic interaction, the transverse 

relaxation time depends on the internal magnetic field, which conforms to the ordinary one, since it depends 

generally on the spin. 

 

III. CONCLUSION 
 

Using Schrodinger equation in the energy space a useful expression for the transverse relaxation time was found. It 

was shown that, when electric interaction dominates the transverse relaxation time depends on electric dipole 

moment. But when magnetic interaction becomes important it depends on internal magnetic field as well as 

magnetic spin. 
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